

# **DEPARTMENT OF CHEMISTRY**

Bachelor of Science
(Industrial Chemistry)

5<sup>th</sup> Semester

Syllabi



| Effective from Sess | Effective from Session: 2017-2018 |                        |                                                    |      |         |       |     |  |
|---------------------|-----------------------------------|------------------------|----------------------------------------------------|------|---------|-------|-----|--|
| Course Code         | CH301                             | Title of the Course    | Chromatography Techniques                          | L    | T       | P     | C   |  |
| Year                | Third                             | Semester               | Fifth                                              | 3    | 1       | 0     | 4   |  |
| Pre-Requisite       | 10+2 with Chemistry               | Co-requisite           | -                                                  |      |         |       |     |  |
| Course Objectives   | Students able to un               | derstand Separation to | echniques such as Thin layer chromatography, Paper | chro | matogra | aphy, | Gas |  |
| Course Objectives   | chromatography, High              | performance Liquid Ch  | romatography and Ion exchange chromatography       |      |         |       |     |  |

|     | Course Outcomes                                                                                                                             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Understand the chromatographic techniques and its classification.                                                                           |
| CO2 | Evaluate Thin layer chromatography; principle and its applications. Paper chromatography and its applications. Separation of amino acid     |
| CO2 | mixture.                                                                                                                                    |
| CO3 | Comprehension of Principles of gas-liquid chromatography, Instrumentation and its Industrial applications.                                  |
| CO4 | Able to discuss Normal and reverse phase HPLC, Isocratic and gradient elution, Instrumentation; mobile phase reservoir, column and detector |
| CO4 | and Industrial applications of HPLC.                                                                                                        |
| CO5 | Analyze the action of resins, experimental techniques, applications, separation of metal ions, separation of chloride and Bromide ions -    |
| COS | removal of interfering radicals.                                                                                                            |

| Unit<br>No. | Title of the Unit                      | Contact<br>Hrs.                                                                                                                                                                                                                                                                                                                         | Mapped<br>CO |   |  |
|-------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|--|
| 1           | Separation techniques                  | Chromatography, Classification of Chromatographic methods, Elution in column chromatography, chromatograms, distribution constant, retention time, stationary phase, mobile phase, principle of adsorption and partition chromatography, column chromatography; principle, adsorbents used, preparation of column, adsorption, elution. | 8            | 1 |  |
| 2           | Thin layer chromatography              | principle, choice of adsorbent and solvent, Rf value, applications. Paper chromatography; solvents used, principle, Rf value, factors influencing Rf value, applications. Separation of amino acid mixture.                                                                                                                             | 8            | 2 |  |
| 3           | Gas chromatography                     | Introduction, Principles of gas-liquid chromatography, Instrumentation; Carrier gas system, Sample injection, Columns, Stationary phase, Detectors (Flame Ionization, Electron capture and Thermal conductivity) and Industrial applications.                                                                                           | 8            | 3 |  |
| 4           | High performance liquid chromatography | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                   |              | 4 |  |
| 5           | Ion exchange chromatography            | Ion exchange principle, resins, action of resins, experimental techniques, applications, separation of metal                                                                                                                                                                                                                            |              |   |  |

# Reference Books:

CRC Handbook of Chromatography, Volume IV: Drugs, ISBN: 0849330920

Chromatography: Basic Principles, Sample Preparations and Related Methods,

Chromatography: Principles and Instrumentation,

Introduction to modern liquid chromatography,

Liquid Chromatography: Fundamentals and Instrumentation,

# e-Learning Source:

https://microbenotes.com/chromatography-principle-types-and-applications/

https://www.khanacademy.org/science/class-11-chemistry-india/xfbb6cb8fc2bd00c8: in-in-organic-chemistry-some-basic-principles-and-defined and the control of the control

techniques/xfbb6cb8fc2bd00c8: in-in-methods-of-purification-of-organic-compounds/v/basics-of-chromatography

https://www.slideshare.net/nadeemakhter7374/chromatography-34247423

http://www.biologydiscussion.com/biochemistry/chromatography-techniques/top-12-types-of-chromatographic-techniques-biochemistry/12730

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |      |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 3   | 2                                                              | -   | 2   | 1   | 3   | 3   | 3    | 2    | -    | 2    | -    |
| CO2          | 3   | 2                                                              | -   | 2   | 1   | 2   | 3   | 3    | 2    | -    | 2    | -    |
| CO3          | 3   | 2                                                              | -   | 3   | 1   | 3   | 3   | 3    | 2    | -    | 2    | -    |
| CO4          | 2   | 3                                                              | -   | 2   | 1   | 3   | 3   | 3    | 2    | -    | 2    | -    |
| CO5          | 3   | 2                                                              | -   | 2   | 1   | 3   | 2   | 3    | 2    | -    | 2    | -    |

|                                    | gi                 |
|------------------------------------|--------------------|
| Name & Sign of Program Coordinator | Sign & Seal of HoD |



| Effective from Session: 2017-2018 |                         |                                                                                                                |                                                                |        |     |   |   |  |  |
|-----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------|-----|---|---|--|--|
| Course Code                       | CH302                   | Title of the Course                                                                                            | Process In Organic Chemicals Manufacturing                     | L      | T   | P | C |  |  |
| Year                              | Third                   | Semester                                                                                                       | Fifth                                                          | 3      | 1   | 0 | 4 |  |  |
| Pre-Requisite                     | 10+2 with Chemistry     | Co-requisite                                                                                                   | -                                                              |        |     |   |   |  |  |
| Course Objectives                 | Interest will be devel  | est will be developed among students for industrial organic chemistry and introduction of basic organic chemic |                                                                |        |     |   |   |  |  |
| Course Objectives                 | manufacturing technique | ies, organic reaction me                                                                                       | chanisms and their applications in industrial chemistry will l | e taug | ht. |   |   |  |  |

|     | Course Outcomes                                                                                                                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Commercial preparations of nitration process to produce important organic substances of industrial use are analyzed for their procedural feasibility. |
| CO2 | How common sulphonation reactions are applied in commercial chemicals manufacture is done along with their mechanistic action.                        |
| CO3 | The application of common alkylation reactions in commercial chemical manufacturing is done in conjunction with their mechanistic action.             |
| CO4 | Esterification processes are used in conjunction with their mechanistic activity in the production of commercial chemicals.                           |
| CO5 | Students develop an interest in halogenation in the context of industrial chemistry.                                                                  |

| Unit<br>No. | Title of the Unit | Content of Unit                                                                                                                                                                                                                             | Contact<br>Hrs. | Mapped<br>CO |
|-------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Nitration         | Introduction - Nitrating agents and mechanism of nitration process such as nitration: i) Benzene to nitrobenzene and m-dinitrobenzene ii) Chlorobenzene to o- and pnitrochlorobenzenes iii) Toluene. Continuous vs batch nitration.elution. | 8               | 1            |
| 2           | Sulphonation      | Introduction, sulphonating agents, Chemical and physical factors affect sulphonation, mechanism of sulphonation reactions, Commercial sulphonation of benzene, naphthalene, Toluene, batch vs continuous sulphonation.                      | 8               | 2            |
| 3           | Alkylation        | Introduction, sulphonating agents, Chemical and physical factors affect sulphonation, mechanism of sulphonation reactions, Commercial sulphonation of benzene, naphthalene, Toluene, batch vs continuous sulphonation.                      | 8               | 3            |
| 4           | Esterification    | Introduction, Esterfication by organic acids, by addition of unsaturated compounds, esterification of carboxyl acid derivatives, commercial manufacture of ethyl acetate, vinyl acetate, cellulose acetate.                                 | 8               | 4            |
| 5           | Halogenation      | Introduction - Reagents for halogenations, mechanism of halogenation, halogenation of aromatics. Commercial manufactures - chlorobenzenes, chloral, monochloracetic and chloromethanes, dichlorofluoromethane.                              | 8               | 5            |

#### **Reference Books:**

Process In Organic Chemicals Manufacturing, ISBN: 9780071410373

Handbook of Industrial Chemistry: Organic Chemicals 16 January 2005, by Bassam El Ali, M. Ali

Industrial Organic Chemicals, Third Edition, ISBN:9780470537435

Shreves Chemical Process Industries, 5th Edition,

Sre Shreves Chemical Process Industries Handbook, 5/E 16 January 1999, by Nicholas Basta

Industrial Chemistry by B. K. Sharma

# e-Learning Source:

https://www.britannica.com/technology/chemical-industry/Organic-chemicals

http://www.ilocis.org/documents/chpt77e.htm

https://www.accessengineeringlibrary.com/browse/handbook-of-industrial-chemistry-organic-chemicals/c9780071410373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch01110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110373ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0110375ch0

http://www.chemistryexplained.com/Hy-Kr/Industrial-Chemistry-Organic.html

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |      |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 3   | 2                                                              | -   | 2   | 1   | 2   | 2   | 3    | 3    | -    | 2    | 2    |
| CO2          | 3   | 2                                                              | -   | 2   | 1   | 2   | 2   | 2    | 3    | -    | 2    | 2    |
| CO3          | 3   | 2                                                              | -   | 2   | 1   | 2   | 2   | 3    | 3    | -    | 2    | 1    |
| CO4          | 3   | 2                                                              | -   | 2   | 1   | 2   | 2   | 3    | 3    | -    | 2    | 2    |
| CO5          | 3   | 2                                                              | -   | 2   | 1   | 2   | 2   | 2    | 2    | -    | 2    | 1    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: 2017-2018 |                          |                                                                                                                              |                                                             |        |           |      |   |  |  |  |
|-----------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------|-----------|------|---|--|--|--|
| Course Code                       | CH303                    | Title of the Course                                                                                                          | Phytochemistry                                              | L      | T         | P    | C |  |  |  |
| Year                              | Third                    | Semester                                                                                                                     | Fifth                                                       | 3      | 1         | 0    | 4 |  |  |  |
| Pre-Requisite                     | 10+2 with Chemistry      | Co-requisite                                                                                                                 | •                                                           |        |           |      |   |  |  |  |
| Course Objectives                 | Students will be acquain | dents will be acquainted with important terpenoids, alkaloids and hormones their synthesis and structure elucidation is done |                                                             |        |           |      |   |  |  |  |
| Course Objectives                 | context with industrial  | chemistry. A special em                                                                                                      | phasis will be laid on plant based phytochemicals and their | medici | nal utili | itv. |   |  |  |  |

|     | Course Outcomes                                                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Isolation and separation procedures are understood to separate individual components (terpenoids) in natural products chemistry. |
| CO2 | Structure elucidation of various alkaloids, terpenoids is done to better understand the fundamentals of phytochemistry.          |
| CO3 | Physiological action of important steroids and hormones is evaluated.                                                            |
| CO4 | Classification and structure of vitamins is understood and utility of vitamins is applied in biological structures.              |
| CO5 | Phytopharmaceuticals and their utility is analysed in context with industrial chemistry                                          |

| Unit<br>No. | Title of the Unit     | Content of Unit                                                                                                                                                                                                                                               | Contact<br>Hrs. | Mapped<br>CO |
|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Terpenoids            | Introduction, nomenclature, occurrence, general properties, classification, and isolation of terpenoids, isoprene rule; synthesis of Citral and Menthol. Carotenoids: Introduction, classification, and isolation of carotenoids.                             | 8               | 1            |
| 2           | Alkaloids             | Introduction occurrence, functions, nomenclature, chemical classification, isolation, and general properties of alkaloid. Introduction and physiological action; Ephedrine, Adreneline or Epinephrine, Nor adreneline or Nor epinephrine, Nicotine, atropine. | 8               | 1,2          |
| 3           | Steroids and hormones | Introduction, occurrence, structure and physiological action; cholesterol, Ergosterol. Steroidal ormones; Progesterone, Testosterone, Androgen, Oestrogens.                                                                                                   | 8               | 3            |
| 4           | Vitamins              | Introduction, Classification, Sources of vitamins and their deficiency diseases. Physiological function of water and fat soluble vitamins. Structure and uses; Vit. A, Vit. B1, B2 B6, and Vit. C.                                                            | 8               | 4            |
| 5           | Phytopharmaceuticals  | Recent development and commercialization of plant derived natural products. Structure and medicinal uses of caffeine, theophylline and theobromine.                                                                                                           | 8               | 5            |

# **Reference Books:**

Textbook of Pharmacognosy and Phytochemistry,

A Textbook of Pharmacognosy and Phytochemistry,
Phytochemistry: Volume 1: Fundamentals, Modern Techniques, and Applications,

Pharmacognosy and Phytochemistry – I,

Medicinal Chemistry by Ashutosh Kar,

An Introduction to Medicinal Chemistry,

# e-Learning Source:

https://medlineplus.gov/vitamins.html

https://www.health.harvard.edu/staying-healthy/listing\_of\_vitamins

https://medlineplus.gov/steroids.html

https://www.versusarthritis.org/about-arthritis/treatments/drugs/steroids/

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |      |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 2   | 3                                                              | -   | 2   | 1   | 2   | 2   | 3    | 3    | -    | 2    | -    |
| CO2          | 3   | 3                                                              | -   | 2   | 1   | 3   | 2   | 3    | 3    | -    | 2    | -    |
| CO3          | 3   | 2                                                              | -   | 3   | 1   | 3   | 2   | 3    | 3    | -    | 2    | -    |
| CO4          | 3   | 3                                                              | -   | 3   | 1   | 3   | 2   | 3    | 3    | -    | 3    | -    |
| CO5          | 2   | 2                                                              | -   | 2   | 1   | 2   | 1   | 2    | 2    | -    | 2    | -    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Sess | Effective from Session: 2017-2018 |                            |                                                                                                                                                                                    |        |          |        |       |  |  |  |  |  |
|---------------------|-----------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------|-------|--|--|--|--|--|
| Course Code         | CH304                             | Title of the Course        | Unit Operation in Chemical Industry                                                                                                                                                | L      | T        | P      | C     |  |  |  |  |  |
| Year                | Third                             | Semester                   |                                                                                                                                                                                    |        |          |        |       |  |  |  |  |  |
| Pre-Requisite       | 10+2 with Chemistry               | Co-requisite               | -                                                                                                                                                                                  |        |          |        |       |  |  |  |  |  |
| Course Objectives   | and to comprehend the             | e filtration and drying of | leep understanding of theory distillation and several colum of mixed component in a binary/ ternary component with emistry with nucleation, growth and crystallization mechanisms. | the co | ntext of | findus | trial |  |  |  |  |  |

|     | Course Outcomes                                                                                                                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Students will develop an understanding of the application of an analysis related to a question of relevance based on experience in distillation. |
| CO2 | Based on their evaluation experience, students will have a grasp of how to apply an analysis to a relevant question.                             |
| CO3 | Students will be able to understand about the ingredients of filtering and drying of the commercial products.                                    |
| CO4 | Students will have a firm foundation in the fundamentals and applications of crystallization process.                                            |
| CO5 | Students will gain an understanding of extraction of the compounds in mixtures.                                                                  |

| Unit<br>No. | Title of the Unit | Content of Unit                                                                                                                                                                                                                                                                                                                                             | Contact<br>Hrs. | Mapped<br>CO |
|-------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Distillation      | Introduction, Bath and continuous distillation, Separation of azeotropes, Plates columns and packed columns Absorption: Introduction: Equipments- packed columns spray Columns, bubble columns, packed bubble columns, mechanically agitated contractors.                                                                                                   | 8               | 1            |
| 2           | Evaporation       | Introduction, equipment's- short tube (standard) Evaporator forced circulation evaporators, falling film evaporators, climbing film (upward flow) evaporators, wiped (agitated) film evaporator.                                                                                                                                                            | 8               | 2            |
| 3           | Filtration        | Filtration: Introduction, filter media and filter aids, equipment's- plate and frame filter press, nutch filter, rotary drum filter, sparkler filter, candle filter, bag filter, centrifuge Drying: Introduction, free moisture, bound moisture drying curve; equipment's- tray dryer, rotary dryer, flash dryer, fluid bed dryer, drum dryer, spray dryer. | 8               | 3            |
| 4           | Crystallization   | Introduction: solubility, super-saturation nucleation, crystal growth; Equipment- tank crystallizer, agitated crystallizer, evaporator, crystallizer, draft tube crystallizer.                                                                                                                                                                              | 8               | 4            |
| 5           | Extraction        | Introduction: selection of solvent; Equipments- Spray column, packed column rotating disc column, mixer-settler. Mixing- Introduction; mixing of liquid-liquid solid- Solid, liquid-solid systems.                                                                                                                                                          | 8               | 5            |

# Reference Books:

Textbook of Pharmacognosy and Phytochemistry,

A Textbook of Pharmacognosy and Phytochemistry,
Phytochemistry: Volume 1: Fundamentals, Modern Techniques, and Applications,

Pharmacognosy and Phytochemistry - I,

Medicinal Chemistry by Ashutosh Kar,

An Introduction to Medicinal Chemistry,

# e-Learning Source:

https://sites.google.com/a/sdsenthil.com/chemical-technology/chemical-processing-unit-operation

https://ceng.tu.edu.iq/ched/images/lectures/chem-lec/st4/c5/lec%201.pdf

https://www.unibo.it/en/teaching/course-unit-catalogue/course-unit/2016/367440 https://www.youtube.com/watch?v=H\_Nc7SJwDco

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |      |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 3   | 3                                                              | -   | 2   | 1   | 2   | 3   | 3    | 3    | -    | 2    | 1    |
| CO2          | 3   | 3                                                              | -   | 2   | 1   | 2   | 3   | 3    | 3    | -    | 3    | 1    |
| CO3          | 3   | 3                                                              | -   | 3   | 1   | 2   | 3   | 3    | 3    | -    | 3    | 1    |
| CO4          | 3   | 3                                                              | -   | 3   | 1   | 2   | 3   | 3    | 3    | -    | 2    | 1    |
| CO5          | 2   | 2                                                              | -   | 2   | 1   | 2   | 3   | 3    | 3    | -    | 2    | 1    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



|                     |                                   |                           | <b>v</b> /                                                    |          |          |         |     |  |  |  |  |
|---------------------|-----------------------------------|---------------------------|---------------------------------------------------------------|----------|----------|---------|-----|--|--|--|--|
| Effective from Sess | Effective from Session: 2017-2018 |                           |                                                               |          |          |         |     |  |  |  |  |
| Course Code         | CH305                             | Title of the Course       | Pulp, Paper, Leather and Textile Industry                     | L        | T        | P       | C   |  |  |  |  |
| Year                | Third                             | Semester                  | Fifth                                                         | 3        | 1        | 0       | 4   |  |  |  |  |
| Pre-Requisite       | 10+2 with Chemistry               | Co-requisite              | -                                                             |          |          |         |     |  |  |  |  |
| Course Objectives   | To provide a basic und            | lerstanding of the natur  | e of chemical materials and the emerging trend. In addition   | ı, it se | eks to a | address | the |  |  |  |  |
| Course Objectives   | massive drive to unders           | stand these materials and | d improve their properties in order to meet material requirem | ents.    |          |         |     |  |  |  |  |

|     | Course Outcomes                                                                                         |  |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1 | CO1 Student will be able to apply the knowledge to produce various types of pulp and papers.            |  |  |  |  |  |  |  |  |
| CO2 | Student will be able know the processing techniques to produce special types of papers.                 |  |  |  |  |  |  |  |  |
| CO3 | Student will be able to demonstrate the basic mechanism and processes involved in leather industry.     |  |  |  |  |  |  |  |  |
| CO4 | Student will be able to know about a challenge which arises from leather industries and their handling. |  |  |  |  |  |  |  |  |
| CO5 | Student will able to know about Indian industries and products.                                         |  |  |  |  |  |  |  |  |

| Unit<br>No. | Title of the Unit                                       | Content of Unit                                                                                                                                                                                                                                                         | Contact<br>Hrs. | Mapped<br>CO |  |  |
|-------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|
| 1           | Pulp and paper                                          | Introduction - Manufacture of pulp, Sulphate or Kraft pulp, Soda pulp, Sulphite pulp Rag pulp, Beating, refining, filling, sizing and coloring, manufacture of paper and paper making additives; processing aids, functional additives, strength additives and binders. |                 |              |  |  |
| 2           | Special types of papers and their manufacturing process |                                                                                                                                                                                                                                                                         |                 |              |  |  |
| 3           | Leather Industry-I                                      | Introduction - Constituents of Animal Skin - Preparing skins and hides - Cleaning and soaking - Liming and degreasing.                                                                                                                                                  | 8               | 3            |  |  |
| 4           | Leather Industry-II                                     | Introduction, Manufacture of leather, Preparation of hides for tanning, Vegetable, chrome and oil tanning - Byproduct.                                                                                                                                                  | 8               | 4            |  |  |
| 5           | Textiles Chemistry                                      | Indian textile industries, general consideration of textile fibres: cotton, wool, silk, and rayon fibres; General considerations of synthetic fibres; Indetification of textile fibres; Water soluble resins, and epoxy resins.                                         | 8               | 5            |  |  |

## **Reference Books:**

Chemical process industries N.R Nerris shreve

Chemical process principales: part 1 & II – O.A / Hougen, K.M Watson RA Ragatz (CBS)

Shrev's Chemical process Industries: 5th edition – George T. Austin, Mc Graw Hill Book Co.

Handbook of industrial chemistry: Volume I & II, KH Davis, FS Berner, CBS Publication.

Plastic Additives Technology Hand Book: Himadri Panda, Engineers India Research Institute

Industrial Chemistry B.K.Sharma, goel publishing house

## e-Learning Source:

https://www.youtube.com/watch?v=4pWBknxLTYw

https://www.youtube.com/watch?v=z6QnUCc7ZCg

https://www.youtube.com/watch?v=5Lusmpg\_TdA

https://www.youtube.com/watch?v=Lu31Zt8f3xo

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |      |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 3   | 3                                                              | -   | 2   | 1   | 3   | 3   | 3    | 3    | -    | 3    | -    |
| CO2          | 2   | 2                                                              | -   | 1   | 1   | 2   | 2   | 3    | 2    | -    | 2    | -    |
| CO3          | 3   | 3                                                              | -   | 2   | 1   | 3   | 3   | 3    | 3    | -    | 3    | -    |
| CO4          | 2   | 2                                                              | -   | 1   | 1   | 2   | 2   | 3    | 2    | -    | 2    | -    |
| CO5          | 3   | 3                                                              | -   | 2   | 1   | 3   | 3   | 3    | 3    | -    | 3    | -    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: 2017-2018 |                                                                                                                                    |                                                         |       |   |   |   |   |  |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------|---|---|---|---|--|--|--|--|
| Course Code                       | CH306                                                                                                                              | Title of the Course                                     | Dyes  | L | T | P | C |  |  |  |  |
| Year                              | Third                                                                                                                              | Semester                                                | Fifth | 3 | 1 | 0 | 4 |  |  |  |  |
| Pre-Requisite                     | 10+2 with Chemistry                                                                                                                | Co-requisite                                            | -     |   |   |   |   |  |  |  |  |
| Course Objectives                 | Students will be able to understand era and history, color and chemical constitution Develop basic chemical reaction and synthesis |                                                         |       |   |   |   |   |  |  |  |  |
| Course Objectives                 | of azodyes and applicat                                                                                                            | of azodyes and applications of some typically used dye. |       |   |   |   |   |  |  |  |  |

|     | Course Outcomes                                                                                                                                                                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Remember the era of dyes and synthesis of benzene intermediates.                                                                                                                                      |
| CO2 | Understand the chemistry of the dyes with respect to general structural features, mode of application to fiber, color shades, classification,mmode of application, Color and chemical constitution    |
| CO3 | Able to evaluate different types of Anthraquinone Dyes like Anthraquinone mordant dyes, Anthraquinone vat dyes, Anthraquinone acid dyes, Anthraquinone Disperse dye.                                  |
| CO4 | Able to create basic Knowledge of azodyes, Diazotization, Diazo Coupling, Acidic azo dyes, Basic azo dyes, Direct or substantive azodyes, Mordant azodyes                                             |
| CO5 | Analyze the important applications of Phenolphthalein, fluorescein, Eosin, Malachite green, Methylene blue, Indigo. Naphthol yellow-S, Crystal violet.fibres; Water soluble resins, and epoxy resins. |

| Unit<br>No. | Title of the Unit          | Content of Unit                                                                                                                                                                                                                                                                                             | Contact<br>Hrs. | Mapped<br>CO |
|-------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Chemistry of intermediates | Introduction of the History of Dyes. Landmarks in the historical development from Natural to synthetic dyes. Benzene intermediates-Chloronitrobenzenes, Nitroanilines, Bromonitroanilines, Nitroanisole.                                                                                                    | 8               | 1            |
| 2           | Classification             | Introduction and classification of dyes on the basis of structure and the mode of application to the fibre. Colour and chemical constitution of dyes; Chemistry of the dyes with respect to general structural features, mode of application to fibre, colour shades, synthesis of typical 4-5 dyes., uses. | 8               | 2            |
| 3           | Anthraquinone dyes         | Anthraquinone mordant dyes; Alizarin, Alizarin Orange, Alizarin Red S. Anthraquinone vat dyes; Indanthrone blue, Pyranthrone. Anthraquinone acid dyes, Anthraquinone Disperse dye.                                                                                                                          | 8               | 3            |
| 4           | Azo dyes                   | Diazotization, Diazo Coupling, Types of Azo dyes; Acidic azo dyes (Methyl Orange, Tartrazine). Basic azo dyes; aniline, butter yellow. Direct or substantive azodyes; Congored. Ingrain azodyes; para red.Mordant azodyes; Eriochrome Black-T. synthetic fibre dyes; red disperse dye.                      | 8               | 4            |
| 5           | Miscellaneous dyes         | Structure and uses; Phenolphthalein, fluorescein, Eosin, Malachite green, Methylene blue, Indigo. Naphthol yellow-S, Crystal violet.                                                                                                                                                                        | 8               | 5            |

# **Reference Books:**

The Complete Book on Natural Dyes & Pigments, ISBN:9788178330327, 8178330326

Dyes, Colors & Pigments By Tarek Ismail Kakhia

Dyes and Pigments Novel Applications and Waste Treatment, ISBN:9781839686146, 1839686146

Handbook of industrial chemistry: Volume I & II, KH Davis, FS Berner, CBS Publication.

Industrial Dyes Chemistry, Properties, Applications, ISBN:9783527606061, 3527606068

Industrial Chemistry B.K.Sharma, goel publishing house

# e-Learning Source:

https://www.britannica.com/technology/dye

https://www.ncbi.nlm.nih.gov/books/NBK385442/

https://www.worldofchemicals.com/407/chemistry-articles/colors-family-inks-dyes-and-pigments.html

https://textilelearner.blogspot.com/2015/01/different-types-of-dyes-with-chemical.html

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |      |  |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|--|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |  |
| CO1          | 3   | 3                                                              | -   | 2   | 1   | 2   | 2   | 3    | 3    | -    | 3    | 1    |  |
| CO2          | 1   | 1                                                              | -   | 1   | 1   | 1   | 1   | 2    | 2    | -    | 1    | 1    |  |
| CO3          | 3   | 3                                                              | -   | 2   | 1   | 2   | 2   | 3    | 3    | 1    | 3    | 1    |  |
| CO4          | 3   | 3                                                              | -   | 2   | 1   | 2   | 2   | 3    | 3    | -    | 3    | 1    |  |
| CO5          | 2   | 2                                                              | -   | 1   | 1   | 1   | 1   | 2    | 2    | -    | 2    | 1    |  |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|
| Name & Sign of Frogram Coordinator | Sign & Sear of Hod |



| Effective from Session: 2017-2018 |                     |                     |                                                                                                                              |   |   |   |   |  |  |
|-----------------------------------|---------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|--|--|
| Course Code                       | CH307               | Title of the Course | Industrial Chemistry Lab – 5                                                                                                 | L | T | P | C |  |  |
| Year                              | Second              | Semester            | Fourth                                                                                                                       | 0 | 0 | 8 | 4 |  |  |
| Pre-Requisite                     | 10+2 with Chemistry | Co-requisite        | -                                                                                                                            |   |   |   |   |  |  |
| Course Objectives                 |                     | 2                   | safely in a laboratory environment, practical/technical/ comproblems, transferable skills like ability to work in teams as y |   |   | , |   |  |  |

|     | Course Outcomes                                                                                           |  |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1 | Remember to keep records of all performed experiments in themanner which is required in laboratory.       |  |  |  |  |  |  |  |  |
| CO2 | Able to Evaluate water quality parameters like DO, BOD, COD, TDS and alkalinity.                          |  |  |  |  |  |  |  |  |
| CO3 | Understand the basic titration methods and technical skills to work in the different fields of chemistry. |  |  |  |  |  |  |  |  |
| CO4 | Explain the principles of chromatographic techniques.                                                     |  |  |  |  |  |  |  |  |
| CO5 | Analyze the importance of personal safety and care of equipment's and chemicals.                          |  |  |  |  |  |  |  |  |

| Unit<br>No. | Title of the Unit | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Contact<br>Hrs. | Mapped<br>CO  |
|-------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
|             | Experiments       | <ol> <li>Separation of amino acid by Thin layer chromatography.</li> <li>Separation of amino acid by paper chromatography.</li> <li>Separation of sugar by Thin layer chromatography.</li> <li>Isolation of lactose &amp; casein.</li> <li>Isolation of lycopene from tomato.</li> <li>Isolation of caffeine from tea.</li> <li>Isolation of piperine from black pepper.</li> <li>Isolation of eugenol from cloves.</li> <li>Isolation of nicotine from tobacco.</li> <li>Determination of protein content of food.</li> <li>Determination of fat content of food.</li> <li>Determination of acetic acid content of vinegar.</li> <li>Determination of acid value of oil.</li> <li>Preparation of methyl orange.</li> </ol> | 40              | 1, 2, 3, 4, 5 |

#### **Reference Books:**

Advance Practical Chemistry: Jagdamba Singh, L.D.S Yadav, Jaya Singh, I.R. Siddiqui, PragatiEdition.

Practical Organic Chemistry, A.I.Vogel.

Practical Physical Chemistry: B. Viswanathan and P.S.Raghavan. Experimental Inorganic Chemistry –W.G.Palmer.

#### e-Learning Source:

https://www.youtube.com/watch?v=MTsn1-ToKqQ 2. http://www.bellevuecollege.edu/wp-content/uploads/sites/140/2014/06/aspirin\_tablets\_titration.pdf

https://www.frontiersin.org/articles/10.3389/fonc.2015.00196/full

https://www.youtube.com/watch?v=1tmqUVSVPo4

https://www.youtube.com/watch?v=KZ35K05SA7g

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |      |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 2   | 2                                                              | -   | 1   | 1   | 1   | 2   | 3    | 3    | 1    | 3    | 3    |
| CO2          | 3   | 3                                                              | -   | 2   | 1   | 2   | 3   | 3    | 2    | 1    | 2    | 2    |
| CO3          | 2   | 2                                                              | -   | 1   | 1   | 1   | 2   | 3    | 3    | 1    | 3    | 3    |
| CO4          | 2   | 2                                                              | -   | 1   | 1   | 1   | 2   | 3    | 2    | 1    | 2    | 2    |
| CO5          | 3   | 3                                                              | -   | 2   | 1   | 2   | 3   | 3    | 3    | 1    | 3    | 3    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



# **DEPARTMENT OF CHEMISTRY**

Bachelor of Science
(Industrial Chemistry)
6<sup>th</sup> Semester
Syllabi



| Effective From Session: 2017-2018 |                                                                                                                            |                         |                                        |   |   |   |   |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|---|---|---|---|--|--|
| Course Code                       | CH308                                                                                                                      | Title of the Course     | Spectroscopic Techniques               | L | T | P | C |  |  |
| Year                              | Third                                                                                                                      | Semester                | Sixth                                  | 3 | 1 | 0 | 4 |  |  |
| Pre-Requisite                     | 10+2 with Chemistry                                                                                                        | Co-requisite            | -                                      |   |   |   |   |  |  |
| Course Objectives                 | Students able to understand the interaction of electromagnetic radiation with the materials, spectroscopic techniques like |                         |                                        |   |   |   |   |  |  |
| Course Objectives                 | Ultraviolet, FT-IR, Nuc                                                                                                    | elear Magnetic Resonand | ce spectroscopy and mass spectrometry. |   |   |   |   |  |  |

| Г |     | Course Outcomes                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
|---|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| ŀ |     | Understanding Wave-like propagation of light, electronic transitions, instrumentation, conjugated systems and transition energic                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
|   | CO1 | Woodward – Fieser rules for calculation of wave length.                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|   | CO2 | Comprehension of absorption in the infrared region, theory of infrared spectroscopy, instrumentation, molecular vibrations, factors affecting vibrational frequencies, characteristic absorptions in common classes of compounds.                                                                        |  |  |  |  |  |  |  |  |  |
|   | CO3 | To create basics of NMR spectroscopy, instrumentation, chemical shift, equivalent and nonequivalent protons, spin-spin splitting and vicinal coupling.                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
|   | CO4 | Able to evaluate the NMR spectra of some representative compounds: Hydrocarbons, Aldehydes, Ketones, Acids and Alcohols, Applications of NMR spectroscopy.                                                                                                                                               |  |  |  |  |  |  |  |  |  |
|   | CO5 | Analyze the theory, instrumentation, important useful terms in mass spectrometry and atomic absorption spectrophotometry; molecular ion peak, metastable peak, fragmentation patterns of various functional groups (alkanes, alkenes, alkynes, alcohols, ketones, aldehydes), Mclafferty rearrangements. |  |  |  |  |  |  |  |  |  |

| Unit<br>No. | Title of the Unit                   | Content of Unit                                                                                                                                                                                                                                                                                                                               | Contact<br>Hrs. | Mapped<br>CO |
|-------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Uv spectroscopy                     | Wave-like propagation of light, absorption of electromagnetic radiation by organic molecules allowed and forbidden transitions, instrumentation, conjugated systems and transition energies, Woodward – Fieser rules; unsaturated carbonyl compounds, conjugated dienes and polyenes.                                                         | 8               | 1            |
| 2           | Ir spectroscopy                     | Introduction, absorption in the infrared region, theory of infrared spectroscopy, instrumentation, molecular vibrations, factors affecting vibrational frequencies, characteristic absorptions in common classes of compounds, characteristic vibrational frequencies of some organic compounds.                                              | 8               | 2            |
| 3           | Nmr spectroscopy                    | Introduction, theory of NMR spectroscopy, instrumentation, chemical shift, equivalent and nonequivalent protons, spin-spin splitting, vicinal coupling,, Interpretation of NMR spectra of some representative compounds.                                                                                                                      | 8               | 3            |
| 4           | Mass spectroscopy                   | Introduction, basic theory, instrumentation, important useful terms in mass spectrometry, fragmentation patterns of various functional groups (alkanes, alkenes, alkynes, alcohols, ether, phenols and amines, ketones, aldehydes, esters, acids, anhydrides), molecular ion peak, metastable peak, Mclafferty rearrangements, Nitrogen rule. | 8               | 4            |
| 5           | Atomic absorption spectrophotometry | Introduction, Principle, Instrumentation, Sample preparation, Internal standard and standard addition, calibration and applications of AAS.                                                                                                                                                                                                   | 8               | 5            |

## **Reference Books:**

Introduction to spectroscopy: Pavia, Lampman & Kriz, 3rd Ed, Books/cole.

Spectroscopic methods in organic chemistry: H. Williams and Ian fleminig, V Edition Tata Mc Grawhills

Organic spectroscopy: William Kemp, 3rd Edition, Palgrave publications.

Fundamentals of Analytical chemistry, Douglas A. Skoog, Donald M. West, F. James Holler, 7th edition, Harcourt college publications.

Principles and practice of analytical chemistry, F. W. Fifield, D. Kealey, 5th edition, Blackwell publication.

Analytical chemistry, Gary D. Christian, 6th edition, Wiley and sons publication.

Basic concepts of analytical chemistry, S. M. Kopper, New Age International Publishers.

#### e-Learning Source:

https://www.youtube.com/watch?v=2Y8pSoS0d1g

http://www.infocobuild.com/education/audio-video-courses/chemistry/ApplicationOfSpectroscopicMethods-IIT-Madras/lecture-25.html

https://scrippslabs.com/summary-of-spectroscopic-techniques/

https://nptel.ac.in/content/storage2/courses/102103044/pdf/mod2.pdf

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |      |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 3   | 2                                                              | -   | 2   | 1   | 3   | 3   | 3    | 2    | -    | 2    | -    |
| CO2          | 3   | 2                                                              | -   | 2   | 1   | 2   | 3   | 3    | 2    | -    | 2    | -    |
| CO3          | 3   | 2                                                              | -   | 3   | 1   | 3   | 3   | 3    | 2    | -    | 2    | -    |
| CO4          | 2   | 3                                                              | -   | 2   | 1   | 3   | 3   | 3    | 2    | -    | 2    | -    |
| CO5          | 3   | 2                                                              | -   | 2   | 1   | 3   | 2   | 3    | 2    | _    | 2    | -    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective From Session: 2017-2018 |                                                                                                                                     |                     |                           |   |   |   |   |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|---|---|---|---|--|--|--|
| Course Code                       | CH309                                                                                                                               | Title of the Course | Chemical Process Industry | L | T | P | C |  |  |  |
| Year                              | Third                                                                                                                               | Semester            | Sixth                     | 3 | 1 | 0 | 4 |  |  |  |
| Pre-Requisite                     | 10+2 with Chemistry                                                                                                                 | Co-requisite        | -                         |   |   |   |   |  |  |  |
| Commo Obioatimo                   | The main objective of this course is to study the composition, preparation, properties and uses of ammonia, nitric acid, phosphorus |                     |                           |   |   |   |   |  |  |  |
| Course Objectives                 | chemical, glass, cement, ceramics and refractories and their related toxic hazards on the health of consumer.                       |                     |                           |   |   |   |   |  |  |  |

|     | Course Outcomes                                                                                                                        |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|     | Evaluate different preparation processes for the manufacture of ammonia, nitric acid, ammonium nitrate and ammonium sulphate and their |  |  |  |  |  |  |  |
| CO1 | related quality control, hazards, safety and effluent management.                                                                      |  |  |  |  |  |  |  |
| CO2 | Evaluate different manufacturing methods of caustic soda and phosphorus chemicals and their properties and uses.                       |  |  |  |  |  |  |  |
| CO3 | Understand the composition of glass and their types, properties and uses.                                                              |  |  |  |  |  |  |  |
| CO4 | Analyze the composition, types, properties and preparation of cement and its setting time.                                             |  |  |  |  |  |  |  |
| CO5 | Understand the classification, properties and uses of ceramics and refractories and their respective characteristics.                  |  |  |  |  |  |  |  |

| Unit<br>No. | Title of the Unit                        | Content of Unit                                                                                                                                                                                                                                                                   | Contact<br>Hrs. | Mapped<br>CO |
|-------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Synthetic nitrogen products              | Ammonia, nitric acid, ammonium nitrate and ammonium sulphate their manufacture with reference to; consumption Pattern, Raw materials, Production process, Quality control, Hazards and safety and Effluent management.                                                            | 8               | 1            |
| 2           | Chlorine – alkali<br>Industrial products | Caustic soda Chlorine. Phosphorus chemicals; Phosphorus, phosphoric acid, ammonium phosphate, superphosphate, triple superphosphate. Lime, gypsum, Silicon, calcium carbide.                                                                                                      | 8               | 2            |
| 3           | Glass                                    | Introduction, Classification and General Properties of Glass, Characteristics, raw Materials, Chemical Reactions, Methods of Manufacture and Uses.                                                                                                                                | 8               | 3            |
| 4           | Cement                                   | Introduction, Composition, Types of cement, Portland cement; raw Materials, manufacture of Cement by wet & Dry process, Reaction in the Kiln, setting of cement, Testing & Uses of cement.                                                                                        | 8               | 4            |
| 5           | Ceramics and refractories                | Introduction, Types of ceramics materials, properties and applications. Refractories, classification of refractories, characteristics of refractories materials, properties of refractories. Neutral refractories; Silicon carbide. Acid refractories; High Alumina refractories. | 8               | 5            |

#### **Reference Books:**

Shreve R.N. Brink. J.A., Chemical Process Industries, International student edition, Pubs: McGraw Hill Book Co. New York, 1960.

Groggins P.M., Unit Process in Organic Synthesis, 5th edition, International student edition, Pubs: McGraw-Hill Book Co., New York, 1998.

Dryden's outlines of Chemical Technology, edited and revised by Gopala Rao M. and Marshall S, Pubs: East-West Press, New Delhi, 2004.

Industrial Chemistry B.K.Sharma, goel publishing house.

Chemical process industries N.R Nerris shreve.

Chemical process principales: part 1 & II – O.A / Hougen, K.M Watson RA Ragatz (CBS)

#### e-Learning Source:

https://encyclopedia 2.the free dictionary.com/chemical + process+industry

https://www.youtube.com/watch?v=RjZJjneJ5fk

https://www.chemicalprocessing.com/

https://www.britannica.com/science/phosphorus-chemical-element

|              | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |      |      |      |      |      |
|--------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 3                                                              | 3   | -   | 1   | 1   | 3   | 3   | 3    | 3    | -    | 1    | 3    |
| CO2          | 2                                                              | 3   | -   | 1   | 1   | 2   | 2   | 3    | 3    | -    | 1    | 3    |
| CO3          | 2                                                              | 2   | -   | 1   | 1   | 2   | 2   | 2    | 2    | -    | 1    | 2    |
| CO4          | 3                                                              | 3   | -   | 2   | 1   | 2   | 2   | 3    | 3    | -    | 1    | 3    |
| CO5          | 3                                                              | 3   | -   | 2   | 1   | 2   | 2   | 3    | 3    | -    | 1    | 3    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



|                                   |                                                                                                                                  |                     | • /                           |   |   |   |   |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|---|---|---|---|--|--|
| Effective From Session: 2017-2018 |                                                                                                                                  |                     |                               |   |   |   |   |  |  |
| Course Code                       | CH310                                                                                                                            | Title of the Course | Fundamental Of Food Chemistry | L | T | P | C |  |  |
| Year                              | Third                                                                                                                            | Semester            | Sixth                         | 3 | 1 | 0 | 4 |  |  |
| Pre-Requisite                     | 10+2 with Chemistry                                                                                                              | Co-requisite        | -                             |   |   |   |   |  |  |
| Course Objectives                 | The course focuses on providing knowledge of food constituents, food additives and food processing techniques. The study of food |                     |                               |   |   |   |   |  |  |
| Course Objectives                 | laws and standards appraise students about quality and safety assurance and food related hazards.                                |                     |                               |   |   |   |   |  |  |

|                                                                                                                                                      | Course Outcomes                                                                                                                                                |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| CO1                                                                                                                                                  | Understanding of Indian food law and food standards, value of quality assurance and safety assurance                                                           |  |  |  |  |  |  |  |  |  |
| CO2 Comprehension of chemical structure, properties and argue importance of food components, including carbohydrates, protein vitamins and minerals. |                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| соз                                                                                                                                                  | Describe the principles in food processing techniques and differentiate food preservation methods like heat preservation and cold preservation, food packaging |  |  |  |  |  |  |  |  |  |
| CO4                                                                                                                                                  | Able to explain different types of food additives with examples and judge its value in real life.                                                              |  |  |  |  |  |  |  |  |  |
| CO5                                                                                                                                                  | Analyze the importance of food safety and food related physical, chemical and biological hazards.                                                              |  |  |  |  |  |  |  |  |  |

| Unit<br>No. | Title of the Unit                                | Content of Unit                                                                                                                                                                                                | Contact<br>Hrs. | Mapped<br>CO |
|-------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Governmental regulations                         | Introduction, Food laws and standards: Indian food safety laws and standards; Quality and safety assurance in food industry; BIS Laboratory Services and Certification by BIS.                                 | 8               | 1            |
| 2           | Constituents of food and their nutritive aspects | Carbohydrates, Proteins, Fats and oils, Vitamins and Minerals.                                                                                                                                                 | 8               | 2            |
| 3           | Food processing techniques                       | Common unit operations, Food deterioration and their control; Heat preservation and processing, Cold preservation and processing Food dehydration, Food concentration & food packaging.                        | 8               | 3            |
| 4           | Food additives                                   | Preservatives, Antioxidants, Chelating agents, Surface active agents, Stabilizing and Thickening agents, Buffering agents, Colouring agents, Sweetening agents & Flavoring agents.                             | 8               | 4            |
| 5           | Food safety, risks and hazards                   | Food related Hazards, Microbiological Considerations in food safety, Effects of processing and storage on microbial safety, Chemical hazards associated with foods, Prevention methods from food born disease. | 8               | 5            |

#### **Reference Books:**

Food Chemistry, Belitz and Gosch, Springer – Verlag Bertin Heiderberg, 2nd Edition, 1999

Principles of Human Nutrition, Martin Eastwood, Chapman and Hall, London, I Edition, 1997.

Food - The Chemistry of its Components, T.P. Coultate, Royal Soc. Chemistry, 4th Edition, 2002.

Food additives, Branan, Alfred Larry, Davidson P. Michae, Food Science and Technology series (35), Morcel Dekker, Inc, 1990.

Introduction to food science, Rick Parker, Delmar Learning, U.S.A, I Edition, 2003.

 $Nutrition\ Science\ and\ application,\ Lori\ Smolin\ L.A.,\ Saunders\ College\ Publishing,\ 3rd\ Edition.$ 

# e-Learning Source:

http://www.basicknowledge101.com/pdf/Food%20chemistry.pdf

https://courses.foodcrumbles.com/courses/food-chemistry-basics/

https://www.cabdirect.org/cabdirect/abstract/19710406009

https://byjus.com/chemistry/food-chemistry/

|        |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |      |
|--------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO     | 101 | 102                                                            | 103 | 104 | 103 | 100 | 107 | 1501 | 1502 | 1503 | 1504 | 1505 |
| CO1    | 3   | 3                                                              | -   | 1   | 1   | 3   | 3   | 3    | 3    | -    | 3    | -    |
| CO2    | 3   | 2                                                              | -   | 2   | 1   | 2   | 2   | 3    | 2    | -    | 2    | -    |
| CO3    | 3   | 3                                                              | -   | 1   | 1   | 3   | 2   | 3    | 3    | -    | 3    | -    |
| CO4    | 3   | 3                                                              | -   | 1   | 1   | 3   | 3   | 3    | 3    | -    | 3    | -    |
| CO5    | 3   | 2                                                              | -   | 2   | 1   | 2   | 3   | 3    | 3    | -    | 2    | -    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective From Session: 2017-2018 |                         |                                                                                                     |                                                            |        |          |        |     |  |  |  |  |
|-----------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------|----------|--------|-----|--|--|--|--|
| Course Code                       | CH311                   | Title of the Course                                                                                 | Dairy Chemistry                                            | L      | T        | P      | C   |  |  |  |  |
| Year                              | Third                   | Semester                                                                                            | Sixth                                                      | 3      | 1        | 0      | 4   |  |  |  |  |
| Pre-Requisite                     | 10+2 with Chemistry     | Co-requisite                                                                                        | -                                                          |        |          |        |     |  |  |  |  |
| Commo Obioatimo                   | To introduce students   | to an understanding of                                                                              | the chemistry of milk constituents. Milk and various dairy | y prod | ucts are | discus | sed |  |  |  |  |
| Course Objectives                 | from the perspective of | from the perspective of the chemical, physical and biological changes that occur during processing. |                                                            |        |          |        |     |  |  |  |  |

|     | Course Outcomes                                                                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Students will be able to describe the composition of milk, identify the approximate content of individual types present                                                  |
| CO2 | Students will integrate their knowledge of food chemistry and describe physicochemical characteristics of the main components.                                           |
| CO3 | Student will be able to explain how dairy products (such as fluid milk, yogurt, butter, powder, cheese) are made and the key functions of the processing steps involved. |
| CO4 | Student will be able explain and apply the processing techniques to produce milk products such as butter, cream, ghee etc. and also detect the adulteration.             |
| CO5 | Students will integrate their knowledge of food chemistry to produce fermented milk products such as ice-creams milk powder etc.                                         |

| Unit<br>No. | Title of the Unit        | Content of Unit                                                                                                                                                                                      | Contact<br>Hrs. | Mapped<br>CO |
|-------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Introduction             | Definition, Composition, Milk lipids, Milk proteins, vitamins and minerals. Factors affecting the composition of milk, adulterants, preservatives.                                                   | 8               | 1            |
| 2           | Properties of milk       | Carbohydrates, Proteins, Fats and oils, Vitamins and Minerals.                                                                                                                                       | 8               | 2            |
| 3           | Processing of milk       | Effect of heat on milk, chemical changes taking place in milk due to processing, sterilization, homogenization and pasteurization, vacuum pasteurization and Ultra high temperature pasteurization.  | 8               | 3            |
| 4           | Milk products            | Cream; definition, chemistry of creaming process. Butter; definition, composition, theory of churning, desi-butter, salted butter. Ghee; major constituents, common adulterants and their detection. | 8               | 4            |
| 5           | Fermentaed milk products | Fermentation of milk; definition and conditions. Ice-creams. Composition, types, manufactures of ice - cream, stabilizers, emulsifiers, and their role. Milk powder, process of making milk powder.  | 8               | 5            |

## **Reference Books:**

Applied Chemistry-K.Bagavathi Sundari MJP Publishers Chennai. 2006.

Principles of dairy technology - Robert Jenness

Indian Dairy Products - Rangappa and Acharya, K.T.

Fundamentals of Dairy chemistry - Wond. F.P. Springer.
Outlines of Dairy Technology - Sukumar De. – Oxford University Press.

Applied chemistry for home science & allied science - T.Jacob, Mcmillan.

#### e-Learning Source:

https://www.youtube.com/watch?v=S4brYhScYlc

 $http://ouat.nic.in/sites/default/files/2-properties\_of\_milk\_dairy\_and\_food\_engineering.pdf$ 

https://www.youtube.com/watch?v=iAaRs4vM8x8

https://www.youtube.com/watch?v=QvSw68wJpqw

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |      |      |      |      |      |  |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|--|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |  |
| CO1          | 2   | 2                                                              | -   | 1   | 1   | 3   | 3   | 3    | 3    | -    | 2    | 1    |  |
| CO2          | 3   | 3                                                              | -   | 2   | 1   | 3   | 3   | 3    | 3    | -    | 3    | 1    |  |
| CO3          | 3   | 2                                                              | -   | 1   | 1   | 3   | 3   | 3    | 3    | -    | 2    | 1    |  |
| CO4          | 2   | 2                                                              | -   | 1   | 1   | 2   | 2   | 3    | 3    | -    | 2    | 1    |  |
| CO5          | 2   | 2                                                              | -   | 1   | 1   | 2   | 2   | 3    | 3    | -    | 2    | 1    |  |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Sess | Effective from Session: 2017-2018 |                            |                                                                  |         |          |           |    |  |
|---------------------|-----------------------------------|----------------------------|------------------------------------------------------------------|---------|----------|-----------|----|--|
| Course Code         | CH312                             | Title of the Course        | Project Training (3 Months)                                      | L       | T        | P         | C  |  |
| Year                | Third                             | Semester                   | Sixth                                                            | 0       | 0        | 0         | 4  |  |
| Pre-Requisite       | 10+2 with Chemistry               | Co-requisite               | -                                                                |         |          |           |    |  |
| Course Objectives   | Student will be able to           | work effectively and s     | safely in a laboratory environment, practical/technical/com      | munic   | ation sl | kills, an | ıd |  |
| Course Objectives   | concepts to solve qual            | itative and quantitative r | problems, transferable skills like ability to work in teams as y | vell as | indeper  | ndently.  |    |  |

|     | Course Outcomes                                                                  |
|-----|----------------------------------------------------------------------------------|
| CO1 | Hands on training                                                                |
| CO2 | Integrate classroom theory with laboratory scale practice.                       |
| CO3 | Understanding professional ethics of industry and code of conduct.               |
| CO4 | Explain the principles of analytical techniques and laboratory handling.         |
| CO5 | Analyze the importance of personal safety and care of equipment's and chemicals. |

|              | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |      |      |      |      |      |
|--------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 3                                                              | 3   | 1   | 2   | 1   | 3   | 3   | 3    | 3    | 2    | 3    | 3    |
| CO2          | 3                                                              | 3   | 1   | 3   | 1   | 3   | 3   | 3    | 3    | 2    | 3    | 3    |
| CO3          | 3                                                              | 3   | 1   | 2   | 1   | 2   | 2   | 3    | 3    | 2    | 3    | 3    |
| CO4          | 3                                                              | 2   | 1   | 2   | 1   | 2   | 2   | 3    | 2    | 2    | 3    | 3    |
| CO5          | 3                                                              | 2   | 1   | 3   | 1   | 3   | 3   | 3    | 2    | 2    | 3    | 3    |

| Name & Sian of Duognam Coordinator | Sion & Sool of HoD |
|------------------------------------|--------------------|
| Name & Sign of Program Coordinator | Sign & Seal of HoD |



| Effective from Session | Effective from Session: 2017-18                                       |                          |                                                |   |   |   |   |  |  |  |  |
|------------------------|-----------------------------------------------------------------------|--------------------------|------------------------------------------------|---|---|---|---|--|--|--|--|
| Course Code            | CH313                                                                 | Title of the Course      | Seminar                                        | L | T | P | C |  |  |  |  |
| Year                   | Second                                                                | Semester                 | Sixth                                          | 0 | 0 | 4 | 2 |  |  |  |  |
| Pre-Requisite          | 10+2                                                                  | Co-requisite             | -                                              |   |   |   |   |  |  |  |  |
| Course Objectives      | <ul><li>Increase vocabulary k</li><li>To build confidence t</li></ul> | o use English for oral p | communication style, develop learner autonomy. |   |   |   |   |  |  |  |  |

| Course Outcomes |                                                                            |  |  |  |  |
|-----------------|----------------------------------------------------------------------------|--|--|--|--|
| CO1             | To develop and improve the communication skills                            |  |  |  |  |
| CO2             | To develop discussion and leadership abilities                             |  |  |  |  |
| CO3             | Skills for the development of demonstration abilities                      |  |  |  |  |
| CO4             | To develop skills for effective power point presentation                   |  |  |  |  |
| CO5             | To understand importance of gestures and body language during presentation |  |  |  |  |

|              | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |      |      |      |      |      |
|--------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 2                                                              | 3   | 1   | -   | 2   | -   | -   | 3   |      | 3    | 2    | 2    | 3    |
| CO2          | 3                                                              | 3   | 2   | -   | 2   | 2   | -   | 3   | 1    | 2    | 2    | 1    | 3    |
| CO3          | 3                                                              | 3   | 1   | -   | 1   | 2   | -   | 3   | 2    | 2    | 2    | 1    | 3    |
| CO4          | 3                                                              | 3   | 1   | -   | 1   | 2   | -   | 3   | 2    | 2    | 2    | 2    | 3    |
| CO5          | 3                                                              | 3   | 1   | -   | 1   | 1   | -   | 3   |      | 2    | 1    | -    | 3    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|